
Architecture

From the collected requirements specified in the given brief, a high-level class diagram was produced. This was
generated to highlight key aspects of the whole program, which is being implemented in a Java-based library
LibGDX.

We constructed our architecture for the game in a UML (Unified Modelling Language) diagram, through using
StarUML. This UML program allows the user to sketch out their UML diagram in a simple but effective
graphical environment. What makes it effective is that it is convenient for the user to pick up the tools,
simplifies editing and assembles a good representation of their project, with no programming necessary; it can
be all be generated graphically.

Main changes

There have been a variety of changes from the proposed original architecture to the new one. You will
immediately see a lot of classes have been removed. This is due to them going beyond the specification for this
brief or we have found different ways to implement the class with benefits provided through the game
engines. In addition to the changes from the first UML diagram, we have simplified the new diagram by only
putting major classes in the document. Also, we have simplified some of the variables and operations, for
example, the keypress method is a selection of the different buttons you can press but is also a placeholder for
a handful of methods which deal with each individual input.

The first major change is with the Entities within the game i.e the player and zombie. All three now have
consecutive parent classes; these are classes that are involved in moving the entity, loading textures and
animating them. These were added for their functionality and positioned so that it stops some code
duplication to be used by all entity classes. Therefore, both the NPCs and the player can use the same
movement function. Furthermore, we overlooked the animation class originally in the first design and did not
account for it until the construction of the software started. This is similar to the textures assets for the game,
which can be traced back to not fully understanding how the game engine works.

Secondly, we didn’t know that we would need an extensive resource manager to handle all our assets; this was
added to manage the loading and storing the relevant assets for the game. With this, there can be fast access
to each of the images during run time requests.

With the “A Killer Hangover” class, it has a lot of the main variables, e.g. points, which were initially in the
player class but was moved to this class as it was easier to implement with multiple classes. Additionally, the
graphics with the health bar and points were easier to implement. Instead of the enemy class giving points and
damage values to the player and then to the graphics module, it is all managed here to reduce complicated
computation, creating a much simpler implementation.

Architecture

The below table goes into some detail on each component of the UML diagram.

Class Explanation
BaseScreen This is used for initializing a window and to set up a variety

of stages. Each stage contains the capability for graphics on 3
separate layers (backStage, entityStage and uiStage) and also
allows the user to provide input to the system. Every interval
stage was added to the architecture to allow ease of
displaying each object to the user. Else without this, we
would have to put more resources into how and when to
print to the screen. But with this it simplifies everything.

PlayScreen Abstract subclass of BaseScreen which implements the
polling for collision detection, assigning keys to movement
and shooting, spawning zombies, moving the zombies, etc.
Essentially provides all of the functionality used in the game
in order to make it easier to create areas for the game.
Furthermore, it was able to manage the main game
mechanics. With it, in one place it was easier to maintain
separate mechanics to find bugs or to update/change them.
Also, this class stores the effect that the player will receive
for picking up drops from the enemies.

SafeArea A subclass of PlayScreen which grants the user points if it is
the first time the user has been in the area.

MapScreen Lists some of the locations in the game, where each item on
the list can be clicked to navigate to the corresponding area.
This is to keep other screen classes simplified as possible so
it will manage the stated functionality.

ImageActor A subclass of the in-built libGDX Actor class which draws an
internally stored texture when the Actor’s draw function is
called. Draw is called by a stage that contains the actor. Also
contains the code for checking for overlap with other
ImageActors. You will notice that this is before the Animate
Actor class this was architecturally chosen because the
Animate class needs the image textures to perform its
function without the images it will not achieve this.

AnimatedActor A subclass of ImageActor which instead of drawing a texture
draws an animation. Also contains a store of animations in
order to allow for the actor having multiple different
animations. It was its own class along with the Image actor
class as it can be cloned when running the program with
multiple instances of it being needed.

MovingActor A subclass of AnimatedActor that implements all of the
variables and a modification to the act function required to
calculate simple movement based on a horizontal velocity,
vertical velocity, horizontal acceleration, vertical
acceleration and angular velocity. This was kept separate
from the entity class so that it is more assessable to check
that the functionality of the class works to its full potential.
In addition, it was done to reduce the length of the entity
class so that other parts of the method could be checked
separately.

Entity A subclass of MovingActor which implements a type system
which allows for the Entity easily being cloned from the list
of entities in the ResourceManager, and also implements the
attributes used to calculate how fast the entity should move
and how much health it should have and does have. You can
see that this has been chosen as a parent class to the
Character and NPC class as they can both share the same
attributes.

Character A subclass of Entity which contains the code for making the
player face the mouse cursor based on an x and y coordinate
in such a way that it does not affect which direction the
player moves in.

NPC A subclass of Entity which contains the code for making the
NPC face the player and follow the player based on the
player’s x and y coordinates.

ResourceManager A class which avoids the need to load image files and
animation files multiple times by loading them in once and
then storing them as ImageActors for images or entities for
animations.

AKillerHangover A subclass of the in-built libGDX Game class which contains
the variables that should be accessible from every class in
the BaseScreen family of classes.

Architectural requirements

ID (IDs are from requirements section) Description Architecture

Func.UI The game requires a user
interface.

This is mainly covered by the
PlayScreen class but is helped by the
classes: BaseScreen, MapScreen and
SafeArea. These classes were designed
to manage all graphical
implementation.

Func.input The user needs to be able to
interact with the system
with mouse and keyboard.

The method PlayScreen will be
responsible for taking the input and
acting accordingly to the user's
actions. Like moving the player.

Func.Points Players will be able to
accumulate point when
playing the game.

The KillerHangover class manages all
of the points by keeping track of the
total and points gain through versus
actions like defeating an enemy in the
game.

Func.Char The user will be able to
select different characters
before starting the game.

With the Entity class being the parent
class of the Character class it is easy to
change the player's character between
different settings associated with each
player type.

Func.Area/Safe Players will be able to
traverse a variety of areas.

The selection of the Screen classes and
the SafeArea class we have used this
to allow the player to move through
different areas in the game.

Func.Vary The game will provide a
selection of enemies
throughout the game.

With the Entity class, we are able to
accommodate this as like the
distinctive players the player can use.

Func.Powers The software will need to
facilitate a selection of
powerups/downs.

The PlayScreen class will aid in the
implementation of this. It will both
manage and display the relevant
power up/down as required.

